mains exam

Particle in a finite well Questions

1. Solve the finite well problem for: $$ |x| < \frac{L}{2} \space \text{for} \space V(x)=0$$ $$ |x| > \frac{L}{2} \space \text{for} \space V(x)=V_o $$
2. Wave function for infinite well is: $$ \psi(x) = \frac{1}{\sqrt{14}} \psi_1 + \frac{3}{\sqrt{14}} \psi_2 +\frac{2}{\sqrt{14}} \psi_3 $$ Find the expectation value of Energy.
For an infinite well potential the energy eigen value is given by: $$ \boxed{E_n = \frac{n^2 \hbar^2 \pi^2}{2mL^2}} $$ where n is the quantum numbers 1,2,3... $\\$ Let's take $E_1$ as energy of $\psi_1$, $E_2$ as energy of $\psi_2$ and $E_3$ as energy of $\psi_3$. So using the energy eigen value equation: $$ E_1 = \frac{ \hbar^2 \pi^2}{2mL^2} , E_2 = \frac{ 4 \hbar^2 \pi^2}{2mL^2} , E_3 = \frac{ 9 \hbar^2 \pi^2}{2mL^2} $$ Expectation value of energy is given by: $$ \langle E \rangle = \int_{-\infty}^{-\infty} \psi^* E \psi$$ $$ \langle E \rangle = \bigg(\frac{1}{\sqrt{14}} \bigg)^2 E_1 + \bigg(\frac{3}{\sqrt{14}}\bigg)^2 E_2 +\bigg(\frac{2}{\sqrt{14}}\bigg)^2 E_3 $$ $$ = \frac{73}{14} \frac{\pi^2 \hbar^2}{2mL^2}$$